Skip to main content

Moving Durchschnittliche Modell Sas


Autoregressive Moving-Average-Fehlerprozesse (ARMA-Fehler) und andere Modelle, die Lags von Fehlertermen beinhalten, können durch Verwendung von FIT-Anweisungen geschätzt und mit SOLVE-Anweisungen simuliert oder prognostiziert werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Residuen verwendet. Mit dem AR-Makro können Modelle mit autoregressiven Fehlerprozessen spezifiziert werden. Mit dem MA-Makro können Modelle mit gleitenden Durchschnittsfehlern angegeben werden. Autoregressive Fehler Ein Modell mit autoregressiven Fehler erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form hat und so weiter für Prozesse höherer Ordnung. Beachten Sie, dass die s unabhängig und identisch verteilt sind und einen Erwartungswert von 0 haben. Ein Beispiel für ein Modell mit einer AR (2) - Komponente ist usw. für Prozesse höherer Ordnung. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Mittelwerte sind. Beachten Sie, dass RESID. Y automatisch durch PROC MODEL definiert wird. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen zu verkürzen. Dadurch wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und fehlende Werte nicht ausbreiten, wenn Lag-Priming-Periodenvariablen fehlen und stellt sicher, dass die zukünftigen Fehler null sind, anstatt während Simulation oder Prognose fehlen. Einzelheiten zu den Verzögerungsfunktionen finden Sie im Abschnitt Lag Logic. Dieses mit dem MA-Makro geschriebene Modell lautet wie folgt: Allgemeine Form für ARMA-Modelle Das allgemeine ARMA-Verfahren (p, q) hat die folgende Form Ein ARMA-Modell (p, q) kann wie folgt angegeben werden: wobei AR i und MA j repräsentieren Die autoregressiven und gleitenden Durchschnittsparameter für die verschiedenen Verzögerungen. Sie können beliebige Namen für diese Variablen verwenden, und es gibt viele äquivalente Möglichkeiten, die die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zweidimensionaler AR (1) - Prozeß für die Fehler der beiden endogenen Variablen Y1 und Y2 wie folgt spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzwerte nicht innerhalb des geeigneten Bereichs liegen, wachsen exponentiell gleitende Modellrestriktionen. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil sich die Iterationen von vernünftigen Werten entfernt haben. Bei der Auswahl der Anfangswerte für ARMA-Parameter sollte Sorgfalt angewendet werden. Startwerte von 0,001 für ARMA-Parameter arbeiten normalerweise, wenn das Modell die Daten gut passt und das Problem gut konditioniert ist. Man beachte, dass ein MA-Modell oft durch ein höherwertiges AR-Modell angenähert werden kann und umgekehrt. Dies kann zu einer hohen Kollinearität bei gemischten ARMA-Modellen führen, was wiederum zu ernsthaften Konditionierungen in den Berechnungen und der Instabilität der Parameterschätzungen führen kann. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen schätzen, versuchen Sie in Schritten abzuschätzen. Verwenden Sie zuerst eine FIT-Anweisung, um nur die strukturellen Parameter mit den auf Null gehaltenen ARMA-Parametern zu schätzen (oder zu vernünftigen vorherigen Schätzungen, falls verfügbar). Als nächstes verwenden Sie eine andere FIT-Anweisung, um die ARMA-Parameter nur unter Verwendung der strukturellen Parameterwerte aus dem ersten Lauf zu schätzen. Da die Werte der Strukturparameter wahrscheinlich nahe an ihren endgültigen Schätzwerten liegen, können die ARMA-Parameterschätzungen nun konvergieren. Verwenden Sie schließlich eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter nun sehr nahe an ihren endgültigen gemeinsamen Schätzungen liegen, sollten die Schätzungen schnell zusammenlaufen, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen Die Anfangsverzögerungen der Fehlerterme von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die von SASETS-Prozeduren unterstützten Autoregressionsfehler-Startup-Methoden sind die folgenden: Bedingte kleinste Fehlerquadrate (ARIMA - und MODEL-Prozeduren) Unbedingte kleinste Fehlerquadrate (AUTOREG, ARIMA und MODEL) Maximale Wahrscheinlichkeit (AUTOREG, ARIMA und MODEL) Yule-Walker (AUTOREG Hildreth-Lu, das die ersten p-Beobachtungen löscht (nur MODELL-Verfahren) Siehe Kapitel 8, Die AUTOREG-Prozedur, für eine Erklärung und Diskussion der Vorzüge verschiedener AR (p) - Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können mit PROC MODEL durchgeführt werden. Für AR (1) Fehler können diese Initialisierungen wie in Tabelle 18.2 gezeigt erzeugt werden. Diese Verfahren sind in großen Proben äquivalent. Tabelle 18.2 Initialisierungen durchgeführt durch PROC MODELL: AR (1) ERRORS Die anfänglichen Verzögerungen der Fehlerausdrücke von MA (q) - Modellen können auch unterschiedlich modelliert werden. Die folgenden gleitenden durchschnittlichen Fehlerstartparadigmen werden von den ARIMA - und MODEL-Prozeduren unterstützt: unbedingte kleinste Fehlerquadrate bedingte kleinste Fehlerquadrate Die bedingte Methode der kleinsten Fehlerquadrate zur Schätzung der gleitenden durchschnittlichen Fehlerterme ist nicht optimal, da sie das Startproblem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie unverändert bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einer Differenz zwischen diesen Residuen und den verallgemeinerten Resten der kleinsten Quadrate für die gleitende durchschnittliche Kovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz fortbesteht. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht-invertierbare gleitende Durchschnittsprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie viele Daten haben, und die gleitenden Durchschnittsparameter-Schätzungen sollten gut innerhalb des invertiblen Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte Kleinste-Quadrate-Schätzungen für das MA (1) - Prozeß können durch Spezifizieren des Modells wie folgt erzeugt werden: Gleitende Durchschnittsfehler können schwer abgeschätzt werden. Man sollte erwägen, eine AR (p) - Näherung für den gleitenden Durchschnitt zu verwenden. Ein gleitender Durchschnitt kann in der Regel durch einen autoregressiven Prozess gut approximiert werden, wenn die Daten nicht geglättet oder differenziert sind. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SASETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Das autoregressive Verfahren kann auf die strukturellen Gleichungsfehler oder auf die endogenen Reihen selbst angewendet werden. Das AR-Makro kann für folgende Arten von Autoregression verwendet werden: uneingeschränkte Vektorautoregression beschränkte Vektorautoregression Univariate Autoregression Um den Fehlerterm einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie die folgende Anweisung nach der Gleichung: Angenommen, Y ist eine Linearen Funktion von X1, X2 und einem AR (2) Fehler. Sie würden dieses Modell wie folgt schreiben: Die Aufrufe zu AR müssen nach allen Gleichungen kommen, auf die sich der Prozess bezieht. Der vorhergehende Makroaufruf AR (y, 2) erzeugt die in der LIST-Ausgabe in Abbildung 18.58 gezeigten Anweisungen. Abbildung 18.58 LIST Optionsausgabe für ein AR (2) - Modell Die PRED-Präfixvariablen sind temporäre Programmvariablen, die verwendet werden, so dass die Verzögerungen der Residuen die korrekten Residuen sind und nicht die, die durch diese Gleichung neu definiert werden. Beachten Sie, dass dies den Aussagen entspricht, die explizit im Abschnitt Allgemeine Formulare für ARMA-Modelle beschrieben sind. Sie können die autoregressiven Parameter auch bei ausgewählten Verzögerungen auf Null setzen. Wenn Sie zum Beispiel autoregressive Parameter in den Lags 1, 12 und 13 wünschen, können Sie die folgenden Anweisungen verwenden: Diese Anweisungen erzeugen die in Abbildung 18.59 dargestellte Ausgabe. Abbildung 18.59 LIST-Option Ausgang für ein AR-Modell mit Lags bei 1, 12 und 13 Die MODEL-Prozedurauflistung der kompilierten Programmcode-Anweisung als Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Es gibt Variationen der Methode der bedingten Kleinste-Quadrate, je nachdem, ob Beobachtungen am Anfang der Serie zum Aufwärmen des AR-Prozesses verwendet werden. Die AR-bedingte Methode der kleinsten Quadrate verwendet standardmäßig alle Beobachtungen und nimmt Nullen für die Anfangsverzögerungen autoregressiver Terme an. Wenn Sie die M-Option verwenden, können Sie anfordern, dass AR die unbedingte Methode der kleinsten Fehlerquadrate (ULS) oder Maximum-Likelihood (ML) anwendet. Zum Beispiel, Diskussionen dieser Methoden wird im Abschnitt AR Anfangsbedingungen zur Verfügung gestellt. Unter Verwendung der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der anfänglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Beispielsweise können Sie mit dem AR-Makro ein autoregressives Modell an die endogene Variable anstelle des Fehlerterms über die Option TYPEV anwenden. Wenn Sie beispielsweise die fünf letzten Lags von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie AR verwenden, um die Parameter und die Lags mit den folgenden Anweisungen zu generieren: Die obigen Anweisungen erzeugen die in Abbildung 18.60 dargestellte Ausgabe. Abbildung 18.60 LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unrestricted Vector Autoregression Um die Fehlerausdrücke eines Gleichungssystems als vektorautoregressiven Prozess zu modellieren, verwenden Sie die folgende Form des AR-Makros nach den Gleichungen: Der Name des Prozessnamens ist ein beliebiger Name, den Sie für AR verwenden, um Namen für den autoregressiven Namen zu verwenden Werden. Mit dem AR-Makro können Sie verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie für den Prozess einen kurzen Prozessname-Wert, wenn Parameter-Schätzwerte in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber diese wird durch die Länge des Prozessnamens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenlistenwert ist die Liste der endogenen Variablen für die Gleichungen. Beispielsweise wird angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess der zweiten Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und ähnlichen Code für Y2 und Y3 erzeugen: Für Vektorprozesse kann nur die Methode der bedingten kleinsten Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Verzögerungen 0 ist. Zum Beispiel verwenden die folgenden Aussagen einen Vektorprozess der dritten Ordnung auf die Gleichungsfehler, wobei alle Koeffizienten bei Verzögerung 2 auf 0 beschränkt sind und die Koeffizienten bei den Verzögerungen 1 und 3 unbeschränkt sind: Sie können die drei Serien Y1Y3 als vektorautoregressiven Prozess modellieren In den Variablen statt in den Fehlern, indem Sie die Option TYPEV verwenden. Wenn Sie Y1Y3 als Funktion vergangener Werte von Y1Y3 und einigen exogenen Variablen oder Konstanten modellieren möchten, können Sie mit AR die Anweisungen für die Lag-Terme erzeugen. Schreiben Sie eine Gleichung für jede Variable für den nichtautoregressiven Teil des Modells und rufen Sie dann AR mit der Option TYPEV auf. Zum Beispiel kann der nichtautoregressive Teil des Modells eine Funktion von exogenen Variablen sein, oder es können Abfangparameter sein. Wenn es keine exogenen Komponenten für das Vektorautoregressionsmodell gibt, die keine Abschnitte enthalten, dann weisen Sie jeder der Variablen Null zu. Es muss eine Zuordnung zu jeder der Variablen vorhanden sein, bevor AR aufgerufen wird. Dieses Beispiel modelliert den Vektor Y (Y1 Y2 Y3) als eine lineare Funktion nur seines Werts in den vorherigen zwei Perioden und einen Weißrauschenfehlervektor. Das Modell hat 18 (3 3 3 3) Parameter. Syntax des AR-Makros Es gibt zwei Fälle der Syntax des AR-Makros. Wenn Einschränkungen für einen Vektor-AR-Prozess nicht benötigt werden, hat die Syntax des AR-Makros die allgemeine Form, die ein Präfix für AR spezifiziert, das beim Konstruieren von Namen von Variablen zum Definieren des AR-Prozesses verwendet werden soll. Wenn der Endolist nicht angegeben wird, ist die endogene Liste standardmäßig der Name. Der der Name der Gleichung sein muss, auf die der AR-Fehlerprozess angewendet werden soll. Der Name darf nicht länger als 32 Zeichen sein. Ist die Reihenfolge des AR-Prozesses. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Wenn mehr als ein Name gegeben wird, wird ein unbeschränkter Vektorprozess mit den strukturellen Residuen aller Gleichungen erzeugt, die als Regressoren in jeder der Gleichungen enthalten sind. Wenn nicht angegeben, verwendet endolist standardmäßig den Namen. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Lags müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, verwendet die Laglist standardmäßig alle Verzögerungen 1 bis nlag. Gibt die zu implementierende Schätzmethode an. Gültige Werte von M sind CLS (bedingte Schätzungen der kleinsten Quadrate), ULS (unbedingte Schätzungen der kleinsten Quadrate) und ML (Maximum Likelihood Estimates). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung angegeben wird. Die ULS - und ML-Methoden werden für AR-AR-Modelle von AR nicht unterstützt. Dass das AR-Verfahren auf die endogenen Variablen anstelle der strukturellen Residuen der Gleichungen angewendet werden soll. Eingeschränkte Vektorautoregression Sie können steuern, welche Parameter in den Prozess eingeschlossen werden, wobei die Parameter auf 0 begrenzt werden, die Sie nicht einschließen. Verwenden Sie zuerst AR mit der Option DEFER, um die Variablenliste zu deklarieren und die Dimension des Prozesses zu definieren. Verwenden Sie dann zusätzliche AR-Aufrufe, um Ausdrücke für ausgewählte Gleichungen mit ausgewählten Variablen an ausgewählten Verzögerungen zu generieren. Zum Beispiel sind die erzeugten Fehlergleichungen wie folgt: Dieses Modell besagt, daß die Fehler für Y1 von den Fehlern sowohl von Y1 als auch von Y2 (aber nicht von Y3) bei beiden Verzögerungen 1 und 2 abhängen und daß die Fehler für Y2 und Y3 davon abhängen Die vorherigen Fehler für alle drei Variablen, aber nur bei Verzögerung 1. AR-Makro-Syntax für eingeschränkten Vektor-AR Eine alternative Verwendung von AR kann Einschränkungen für einen Vektor-AR-Prozess durch Aufruf von AR mehrmals aufrufen, um verschiedene AR-Terme und - Lags für verschiedene anzugeben Gleichungen. Der erste Aufruf hat die allgemeine Form spezifiziert ein Präfix für AR zu verwenden, bei der Konstruktion von Namen von Variablen benötigt, um den Vektor AR-Prozess zu definieren. Gibt die Reihenfolge des AR-Prozesses an. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Gibt an, dass AR den AR-Prozess nicht generieren soll, sondern auf weitere Informationen warten soll, die in späteren AR-Aufrufen für denselben Namenwert angegeben sind. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Spezifiziert die Liste der Gleichungen, auf die die Spezifikationen in diesem AR-Aufruf angewendet werden sollen. Nur Namen, die im Endolistenwert des ersten Aufrufs für den Namenswert angegeben sind, können in der Liste der Gleichungen in eqlist erscheinen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. Nur Namen im Endolisten des ersten Aufrufs für den Namenswert können in varlist erscheinen. Wenn nicht angegeben, wird varlist standardmäßig Endolist. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich dem Wert von nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, verwendet laglist standardmäßig alle Verzögerungen 1 bis nlag. Der MA-Makro Der SAS-Makro MA generiert Programmieranweisungen für PROC MODEL für gleitende Durchschnittsmodelle. Das Makro MA ist Teil der SASETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Der gleitende Mittelwertfehlerprozeß kann auf die strukturellen Gleichungsfehler angewendet werden. Die Syntax des MA-Makros entspricht dem AR-Makro, außer es gibt kein TYPE-Argument. Wenn Sie die kombinierten MA - und AR-Makros verwenden, muss das Makro MA dem AR-Makro folgen. Die folgenden SASIML-Anweisungen erzeugen einen ARMA-Fehlerprozess (1, (1 3)) und speichern ihn im Datensatz MADAT2. Die folgenden PROC MODEL-Anweisungen werden verwendet, um die Parameter dieses Modells unter Verwendung der maximalen Wahrscheinlichkeitsfehlerstruktur zu schätzen: Die Schätzungen der durch diesen Durchlauf erzeugten Parameter sind in Abbildung 18.61 dargestellt. Abbildung 18.61 Schätzungen aus einem ARMA-Prozess (1, (1 3)) Es gibt zwei Fälle der Syntax für das MA-Makro. Wenn Beschränkungen für einen Vektor-MA-Prozess nicht erforderlich sind, hat die Syntax des MA-Makros die allgemeine Form, die ein Präfix für MA vorgibt, das beim Konstruieren von Namen von Variablen verwendet wird, die benötigt werden, um den MA-Prozess zu definieren, und ist der Standard-Endolist. Ist die Reihenfolge des MA-Prozesses. Spezifiziert die Gleichungen, auf die das MA-Verfahren angewendet werden soll. Wenn mehr als ein Name angegeben wird, wird die CLS-Schätzung für den Vektorprozess verwendet. Gibt die Verzögerungen an, zu denen die MA-Bedingungen hinzugefügt werden sollen. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Gibt die zu implementierende Schätzmethode an. Gültige Werte von M sind CLS (bedingte Schätzungen der kleinsten Quadrate), ULS (unbedingte Schätzungen der kleinsten Quadrate) und ML (Maximum Likelihood Estimates). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung im Endolisten angegeben ist. MA-Makro-Syntax für eingeschränkte Vektorbewegungsmittel Eine alternative Verwendung von MA ist es, Beschränkungen für einen Vektor-MA-Prozeß durch Aufruf von MA mehrere Male aufzuerlegen, um verschiedene MA-Terme und Verzögerungen für verschiedene Gleichungen anzugeben. Der erste Aufruf hat die allgemeine Form spezifiziert ein Präfix für MA, um bei der Konstruktion von Namen von Variablen für die Definition der Vektor-MA-Prozess zu verwenden. Spezifiziert die Reihenfolge des MA-Prozesses. Spezifiziert die Liste der Gleichungen, auf die das MA-Verfahren angewendet werden soll. Spezifiziert, daß MA nicht den MA-Prozeß erzeugen soll, sondern auf weitere Informationen, die in späteren MA-Aufrufen für denselben Namenwert spezifiziert werden, wartet. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Spezifiziert die Liste der Gleichungen, auf die die Spezifikationen in diesem MA-Aufruf angewendet werden sollen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt überstehendes N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten solche Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. NavigationAutoregressive Moving Average Fehlerprozesse 13 13 13 13 13 13 Autoregressive Moving Average Fehlerprozesse (ARMA-Fehler) und andere Modelle mit Lags von Fehlertermen können mit FIT-Anweisungen geschätzt und mit SOLVE-Anweisungen simuliert oder prognostiziert werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Residuen verwendet. Mit dem AR-Makro können Modelle mit autoregressiven Fehlerprozessen spezifiziert werden. Mit dem MA-Makro können Sie Modelle mit gleitenden mittleren Fehlerprozessen angeben. Autoregressive Fehler Ein Modell mit autoregressiven Fehler erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form hat und so weiter für Prozesse höherer Ordnung. Beachten Sie, dass die s unabhängig und identisch verteilt sind und einen Erwartungswert von 0 haben. Ein Beispiel für ein Modell mit einer AR (2) - Komponente ist: Sie würden dieses Modell wie folgt schreiben: oder äquivalent das AR-Makro als Moving Average Models 13A verwenden Modell mit mittleren Durchschnittsfehlern erster Ordnung, MA (1), hat die Form, in der identisch und unabhängig verteilt mit Mittelwert Null ist. Ein MA (2) - Fehlerprozeß hat die Form und so weiter für Prozesse höherer Ordnung. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Durchschnittsparameter sind. Beachten Sie, dass RESID. Y automatisch durch PROC MODEL als Hinweis definiert wird, dass RESID. Y ist. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen abzuschneiden. Dadurch wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und keine fehlenden Werte propagieren, wenn Lag-Priming-Periodenvariablen fehlen und stellt sicher, dass die zukünftigen Fehler null sind, anstatt während Simulation oder Prognose fehlen. Einzelheiten zu den Verzögerungsfunktionen finden Sie im Abschnitt 34Lag Logic.34 Dieses mit dem MA-Makro geschriebene Modell ist Generalform für ARMA-Modelle. Der allgemeine ARMA-Prozess (p, q) hat die folgende Form Ein ARMA-Modell (p, q) kann sein Wie folgt angegeben, wobei AR i und MA j die autoregressiven und sich bewegenden Durchschnittsparameter für die verschiedenen Verzögerungen darstellen. Sie können beliebige Namen für diese Variablen verwenden, und es gibt viele äquivalente Möglichkeiten, die die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zweidimensionaler AR (1) - Prozess für die Fehler der beiden endogenen Variablen Y1 und Y2 folgendermaßen spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzwerte nicht innerhalb des geeigneten Bereichs liegen, wachsen exponentiell gleitende Modellrestriktionen. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil sich die Iterationen von vernünftigen Werten entfernt haben. Bei der Auswahl der Anfangswerte für ARMA-Parameter sollte Sorgfalt angewendet werden. Startwerte von .001 für ARMA-Parameter arbeiten in der Regel, wenn das Modell die Daten gut passt und das Problem ist gut konditioniert. Man beachte, dass ein MA-Modell oft durch ein AR-Modell höherer Ordnung angenähert werden kann und umgekehrt. Dies kann zu einer hohen Kollinearität bei gemischten ARMA-Modellen führen, was wiederum zu ernsthaften Konditionierungen in den Berechnungen und der Instabilität der Parameterschätzungen führen kann. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen schätzen, versuchen Sie in Schritten abzuschätzen. Verwenden Sie zuerst eine FIT-Anweisung, um nur die strukturellen Parameter mit den auf Null gehaltenen ARMA-Parametern zu schätzen (oder zu vernünftigen vorherigen Schätzungen, falls verfügbar). Als nächstes verwenden Sie eine andere FIT-Anweisung, um die ARMA-Parameter nur unter Verwendung der strukturellen Parameterwerte aus dem ersten Lauf zu schätzen. Da die Werte der Strukturparameter wahrscheinlich nahe an ihren endgültigen Schätzwerten liegen, können nun die ARMA-Parameterschätzwerte konvergieren. Verwenden Sie schließlich eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter nun sehr nahe an ihren endgültigen gemeinsamen Schätzungen liegen, sollten die Schätzungen schnell zusammenlaufen, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen 13 13 13 13 13 13 13 13 13 13 13 13 Die Anfangsverzögerungen der Fehlerterme von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die von SASETS-Prozeduren unterstützten autoregressiven Fehlerstart-Methoden sind die folgenden: CLS bedingte kleinste Fehlerquadrate (ARIMA - und MODEL-Prozeduren) ULS unbedingte kleinste Fehlerquadrate (AUTOREG, ARIMA und MODEL) ML maximale Wahrscheinlichkeit (AUTOREG-, ARIMA - und MODEL-Prozeduren) YW Yule - Walker (nur AUTOREG-Prozedur) HL Hildreth-Lu, der die ersten p-Beobachtungen löscht (nur MODEL-Prozedur) Siehe Kapitel 8. für eine Erklärung und Diskussion der Vorzüge verschiedener AR (p) - Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können mit PROC MODEL durchgeführt werden. Bei AR (1) Fehlern können diese Initialisierungen wie in Tabelle 14.2 dargestellt erzeugt werden. Diese Verfahren sind in großen Proben äquivalent. Tabelle 14.2: Initialisierungen durch PROC MODELL: AR (1) ERRORS MA Anfangsbedingungen 13 13 13 13 13 13 Die Anfangsverzögerungen der Fehlerterme von MA (q) - Modellen können auch auf unterschiedliche Weise modelliert werden. Die folgenden gleitenden durchschnittlichen Fehlerstartparadigmen werden von den ARIMA - und MODEL-Prozeduren unterstützt: ULS unconditional least squares CLS bedingte kleinste Quadrate ML Maximum-Likelihood Die bedingte Methode der kleinsten Fehlerquadrate zur Schätzung der gleitenden durchschnittlichen Fehlerterme ist nicht optimal, da sie das Startproblem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie unverändert bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einer Differenz zwischen diesen Residuen und den verallgemeinerten Kleinste-Quadrate-Residuen für die gleitende mittlere Kovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz fortbesteht. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht invertierbare gleitende Durchschnittsprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie viele Daten haben, und die gleitenden Durchschnittsparameter-Schätzungen sollten gut innerhalb des invertiblen Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte Kleinste-Quadrate-Schätzungen für das MA (1) - Prozeß können durch Spezifizieren des Modells wie folgt erzeugt werden: Gleitende Durchschnittsfehler können schwer abgeschätzt werden. Sie sollten eine AR (p) - Näherung für den gleitenden Durchschnittsprozess in Betracht ziehen. Ein gleitender Durchschnittsprozess kann üblicherweise durch einen autoregressiven Prozess gut approximiert werden, wenn die Daten nicht geglättet oder differenziert wurden. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SASETS-Software und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Das autoregressive Verfahren kann auf die strukturellen Gleichungsfehler oder auf die endogenen Reihen selbst angewendet werden. Das AR-Makro kann für univariate Autoregression uneingeschränkte Vektorautoregression eingeschränkte Vektorautoregression verwendet werden. Univariate Autoregression 13 Um den Fehlerterm einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie die folgende Anweisung nach der Gleichung: Angenommen, Y ist eine lineare Funktion von X1 und X2 und ein AR (2) - Fehler. Sie würden dieses Modell wie folgt schreiben: Die Aufrufe zu AR müssen nach allen Gleichungen kommen, auf die sich der Prozess bezieht. Der aufrufende Makroaufruf AR (y, 2) erzeugt die in der LIST-Ausgabe in Abbildung 14.49 gezeigten Aussagen. Abbildung 14.50: LIST-Optionenausgabe für ein AR-Modell mit Lags bei 1, 12 und 13 Es gibt Variationen der Methode der bedingten Kleinste-Quadrate, je nachdem, ob Beobachtungen am Anfang der Serie verwendet werden, um den AR-Prozess zu aktivieren. Die AR-bedingte Kleinste-Quadrate-Methode verwendet standardmäßig alle Beobachtungen und nimmt Nullen für die anfänglichen Verzögerungen autoregressiver Terme an. Wenn Sie die Option M verwenden, können Sie anfordern, dass AR die unconditional least-squares (ULS) oder Maximum-Likelihood (ML) - Methode verwendet. Zum Beispiel: Die Diskussion dieser Methoden ist in den 34AR Anfangsbedingungen34 früher in diesem Abschnitt. Unter Verwendung der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der anfänglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Beispielsweise können Sie mit dem AR-Makro ein autoregressives Modell an die endogene Variable anstelle des Fehlerterms über die Option TYPEV anwenden. Wenn Sie zum Beispiel die fünf letzten Lags von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie AR verwenden, um die Parameter und Lags mit den folgenden Anweisungen zu generieren: Die obigen Anweisungen erzeugen die in Abbildung 14.51 dargestellte Ausgabe. Die MODEL-Prozedurauflistung der kompilierten Programmcodeaussage als Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y) yl2 ZLAG2 (y ) Yl3 ZLAG3 (y) yl4 ZLAG4 (y) yl5 ZLAG5 (y) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Abbildung 14.51: LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y Als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unrestricted Vector Autoregression 13 Um die Fehlerterme eines Gleichungssatzes als vektorautoregressiven Prozess zu modellieren, verwenden Sie nach den Gleichungen die folgende Form des AR-Makros: Der Name des Prozessnamens ist ein beliebiger Name, den Sie für AR verwenden, um Namen für das zu verwenden Autoregressive Parameter. Mit dem AR-Makro können Sie verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie für den Prozess einen kurzen Prozessname-Wert, wenn Parameter-Schätzwerte in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber diese wird durch die Länge des Namens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenlistenwert ist die Liste der endogenen Variablen für die Gleichungen. Beispielsweise wird angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess der zweiten Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und ähnlichen Code für Y2 und Y3 Folgendes generieren: Für Vektorprozesse kann nur die Methode der bedingten Kleinste-Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Verzögerungen 0 ist. Beispielsweise wenden die Anweisungen einen Vektorprozess der dritten Ordnung auf die Gleichungsfehler an, wobei alle Koeffizienten bei Verzögerung 2 auf 0 beschränkt sind und die Koeffizienten bei den Verzögerungen 1 und 3 unbeschränkt sind. Sie können die drei Serien Y1-Y3 als vektorautoregressiven Prozess in den Variablen anstatt in den Fehlern mit der Option TYPEV modellieren. Wenn Sie Y1-Y3 als Funktion von vergangenen Werten von Y1-Y3 und einigen exogenen Variablen oder Konstanten modellieren möchten, können Sie mit AR die Anweisungen für die Lag-Terme erzeugen. Schreiben Sie eine Gleichung für jede Variable für den nichtautoregressiven Teil des Modells und rufen Sie dann AR mit der Option TYPEV auf. Zum Beispiel kann der nichtautoregressive Teil des Modells eine Funktion von exogenen Variablen sein, oder es können Abfangparameter sein. Wenn es keine exogenen Komponenten für das Vektorautoregressionsmodell gibt, die keine Abschnitte enthalten, dann weisen Sie jeder der Variablen Null zu. Es muss eine Zuordnung zu jeder der Variablen vorhanden sein, bevor AR aufgerufen wird. Dieses Beispiel modelliert den Vektor Y (Y1 Y2 Y3) als eine lineare Funktion nur seines Werts in den vorherigen zwei Perioden und einen Weißrauschenfehlervektor. Das Modell hat 18 (3 mal 3 3 mal 3) Parameter. Syntax des AR-Makros Es gibt zwei Fälle der Syntax des AR-Makros. Der erste hat den allgemeinen Formularnamen, der ein Präfix für AR spezifiziert, das beim Erstellen von Namen von Variablen verwendet wird, die für die Definition des AR-Prozesses erforderlich sind. Wenn der Endolist nicht angegeben wird, ist die endogene Liste standardmäßig der Name. Der der Name der Gleichung sein muss, auf die der AR-Fehlerprozess angewendet werden soll. Der Name darf nicht länger als acht Zeichen sein. Nlag ist die Reihenfolge des AR-Prozesses. Endolist spezifiziert die Liste der Gleichungen, auf die der AR-Prozess angewendet werden soll. Wenn mehr als ein Name gegeben wird, wird ein unbeschränkter Vektorprozess mit den strukturellen Residuen aller Gleichungen erzeugt, die als Regressoren in jeder der Gleichungen enthalten sind. Wenn nicht angegeben, verwendet endolist standardmäßig den Namen. Laglist gibt die Liste der Lags an, zu denen die AR-Terme hinzugefügt werden sollen. The coefficients of the terms at lags not listed are set to 0. All of the listed lags must be less than or equal to nlag . and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through nlag . M method specifies the estimation method to implement. Valid values of M are CLS (conditional least-squares estimates), ULS (unconditional least-squares estimates), and ML (maximum-likelihood estimates). MCLS is the default. Only MCLS is allowed when more than one equation is specified. The ULS and ML methods are not supported for vector AR models by AR. TYPEV specifies that the AR process is to be applied to the endogenous variables themselves instead of to the structural residuals of the equations. Restricted Vector Autoregression 13 13 13 13 You can control which parameters are included in the process, restricting those parameters that you do not include to 0. First, use AR with the DEFER option to declare the variable list and define the dimension of the process. Then, use additional AR calls to generate terms for selected equations with selected variables at selected lags. For example, The error equations produced are This model states that the errors for Y1 depend on the errors of both Y1 and Y2 (but not Y3) at both lags 1 and 2, and that the errors for Y2 and Y3 depend on the previous errors for all three variables, but only at lag 1. AR Macro Syntax for Restricted Vector AR An alternative use of AR is allowed to impose restrictions on a vector AR process by calling AR several times to specify different AR terms and lags for different equations. The first call has the general form name specifies a prefix for AR to use in constructing names of variables needed to define the vector AR process. nlag specifies the order of the AR process. endolist specifies the list of equations to which the AR process is to be applied. DEFER specifies that AR is not to generate the AR process but is to wait for further information specified in later AR calls for the same name value. The subsequent calls have the general form name is the same as in the first call. eqlist specifies the list of equations to which the specifications in this AR call are to be applied. Only names specified in the endolist value of the first call for the name value can appear in the list of equations in eqlist . varlist specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . Only names in the endolist of the first call for the name value can appear in varlist . If not specified, varlist defaults to endolist . laglist specifies the list of lags at which the AR terms are to be added. The coefficients of the terms at lags not listed are set to 0. All of the listed lags must be less than or equal to the value of nlag . and there must be no duplicates. If not specified, laglist defaults to all lags 1 through nlag . The MA Macro 13 The SAS macro MA generates programming statements for PROC MODEL for moving average models. The MA macro is part of SASETS software and no special options are needed to use the macro. The moving average error process can be applied to the structural equation errors. The syntax of the MA macro is the same as the AR macro except there is no TYPE argument. 13 When you are using the MA and AR macros combined, the MA macro must follow the AR macro. The following SASIML statements produce an ARMA(1, (1 3)) error process and save it in the data set MADAT2. The following PROC MODEL statements are used to estimate the parameters of this model using maximum likelihood error structure: The estimates of the parameters produced by this run are shown in Figure 14.52. Maximum Likelihood ARMA(1, (1 3)) Figure 14.52: Estimates from an ARMA(1, (1 3)) Process Syntax of the MA Macro There are two cases of the syntax for the MA macro. The first has the general form name specifies a prefix for MA to use in constructing names of variables needed to define the MA process and is the default endolist . nlag is the order of the MA process. endolist specifies the equations to which the MA process is to be applied. If more than one name is given, CLS estimation is used for the vector process. laglist specifies the lags at which the MA terms are to be added. All of the listed lags must be less than or equal to nlag . and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through nlag . M method specifies the estimation method to implement. Valid values of M are CLS (conditional least-squares estimates), ULS (unconditional least-squares estimates), and ML (maximum-likelihood estimates). MCLS is the default. Only MCLS is allowed when more than one equation is specified on the endolist . MA Macro Syntax for Restricted Vector Moving Average 13 An alternative use of MA is allowed to impose restrictions on a vector MA process by calling MA several times to specify different MA terms and lags for different equations. The first call has the general form name specifies a prefix for MA to use in constructing names of variables needed to define the vector MA process. nlag specifies the order of the MA process. endolist specifies the list of equations to which the MA process is to be applied. DEFER specifies that MA is not to generate the MA process but is to wait for further information specified in later MA calls for the same name value. The subsequent calls have the general form name is the same as in the first call. eqlist specifies the list of equations to which the specifications in this MA call are to be applied. varlist specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . laglist specifies the list of lags at which the MA terms are to be added.

Comments

Popular posts from this blog

Aktienoptionen Und Ausstehende Aktien

Die Grundlagen der ausstehenden Aktien und der Float Financial Lingo ist sehr wichtig für alle interessierten oder investiert in Produkte wie Aktien. Anleihen oder Investmentfonds. Viele der finanziellen Kennzahlen in der Fundamentalanalyse verwendet werden, gehören Dinge wie Aktien und der Float. Lets gehen durch diese Begriffe, so dass das nächste Mal, wenn Sie über sie kommen, werden Sie wissen, ihre Bedeutung. Eingeschränkt und Float Wenn Sie ein wenig näher an den Zitaten für ein Unternehmen zu sehen, können Sie einige obskure Begriffe, die Sie nie begegnet zu sehen. Beispielsweise beziehen sich die beschränkten Aktien auf eine Aktiengesellschaft, die nicht ohne besondere Genehmigung durch die SEC gekauft oder verkauft werden kann. Oft wird diese Art von Aktien an Gelehrte als Teil ihrer Gehälter oder als zusätzliche Leistungen gegeben. Ein anderer Begriff, den Sie treffen können, ist float. Dies bezieht sich auf eine Aktiengesellschaft, die frei gekauft und verkauft werden, ohne

Forex Differenz Zwischen Bid Und Ask In Aktien

Online Forex Trading Community Die Forex Trading Bid Ask Preise und Verbreitung Diese Seite umfasst alles, was Sie wissen müssen über die Bid-und fragen Preise in der Online-Forex Trading-Markt. Von der Definition der Forex-Bid fragen Preise, um die Nutzung der Geld-Brief-Spread. Ein Forex Trading Bid-Kurs ist der Preis, zu dem der Markt bereit ist, ein bestimmtes Währungspaar im Forex-Handelsmarkt zu kaufen. Dies ist der Preis, dass der Händler von Forex kauft seine Basiswährung in. In dem Zitat, wird der Forex-Bid-Preis auf der linken Seite des Währungszitats angezeigt. Wenn das EURUSD-Paar beispielsweise 1.234247 ist, beträgt der Gebotspreis 1.2342. Das bedeutet, dass Sie den EUR für 1.2342 USD verkaufen können. Ein Forex fragen Preis ist der Preis, zu dem der Markt bereit ist, eine bestimmte Forex Trading Währung Paar in der Online-Forex-Markt zu verkaufen. Dies ist der Preis, dass der Händler kauft in. Es scheint auf der rechten Seite des Forex-Zitat. Zum Beispiel, in der gleichen